Monday, June 22, 2015

All about meteors or all about MEteors?

According to Michael Tscholl, a researcher at the University of Wisconsin (as reported in a recent article in Edweek):

Most students harbor fundamental misunderstandings about how forces such as gravity and acceleration operate in outer space. That's because their beliefs about physics tend to be based on their experiences in their own bodies.
Bodies on earth, Tscholl explains, need energy to keep moving; objects in space don't.

How to overcome these fundamental misunderstandings? Guess what Edweek/Tscholl propose? Is it:

1. Enhance students understanding of the concepts of friction and inertia.

2. Give students "embodied cognition" exercises in which they move their bodies around through earthly friction?

Hint: the solution proposed by Edweek/Tscholl is MEteor,
a room-size "simulation environment" that calls to mind a space-age version of the popular space-age version of the popular arcade video game Dance Dance Revolution.
Still stumped? Here's more:
In MEteor, planets and other space objects are projected on the floor and walls. The students must predict the trajectory of an object moving through space by physically moving along the path they think a meteor (projected on the floor) will travel. Laser scanning technology tracks their movements, offering real-time feedback on whether their predictions are correct. Based on that feedback, students adapt their beliefs about scientific principles, then adjust their movements to reflect what they are learning.
Final hint: it's probably reasonable to assume that these MEteor-facilitated embodied cognition exercises don't take place in outer space.

Another problem reported by Tscholl: "students are scared of symbolic representations." Given this, what do you think his solution is?

1. Give students more practice with symbolic representations and their relation to physical phenomena.

2. De-emphasize symbolic representations.

Stumped? Consider: (a) how facility with symbolic representations, and with manipulating these mathematically, is essential to doing physics, and (b) how little sense there is in anything in this article.


Anonymous said...

I mean, really... Is it even possible to lower expectations any more than this?

C T said...

Kids would learn more physics playing Angry Birds, wouldn't they?

ChemProf said...

I was thinking that too -- have them compare Angry Birds to Angry Birds Space and they'd learn more physics.